Learning Linear Bayesian Networks with Latent Variables
نویسندگان
چکیده
This work considers the problem of learning linear Bayesian networks when some of the variables are unobserved. Identifiability and efficient recovery from low-order observable moments are established under a novel graphical constraint. The constraint concerns the expansion properties of the underlying directed acyclic graph (DAG) between observed and unobserved variables in the network, and it is satisfied by many natural families of DAGs that include multi-level DAGs, DAGs with effective depth one, as well as certain families of polytrees.
منابع مشابه
Structural Expectation Propagation (SEP): Bayesian structure learning for networks with latent variables
Learning the structure of discrete Bayesian networks has been the subject of extensive research in machine learning, with most Bayesian approaches focusing on fully observed networks. One of the few methods that can handle networks with latent variables is the ”structural EM algorithm” which interleaves greedy structure search with the estimation of latent variables and parameters, maintaining ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملLearning Topic Models and Latent Bayesian Networks Under Expansion Constraints
Unsupervised estimation of latent variable models is a fundamental problem central to nu-merous applications of machine learning and statistics. This work presents a principled approachfor estimating broad classes of such models, including probabilistic topic models and latent linearBayesian networks, using only second-order observed moments. The sufficient conditions for iden-<...
متن کاملDiscovering Hidden Variables in Noisy-Or Networks using Quartet Tests
We give a polynomial-time algorithm for provably learning the structure and parameters of bipartite noisy-or Bayesian networks of binary variables where the top layer is completely hidden. Unsupervised learning of these models is a form of discrete factor analysis, enabling the discovery of hidden variables and their causal relationships with observed data. We obtain an efficient learning algor...
متن کامل